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Non-Markovian treatment of the spontaneous 2P,,, + lS,,, 
transition in the Dirac hydrogen atom 

J Seke 
Institut fur Theoretische Physik, Technische UniversitGt Wien, Wiedner Hauptstrasse 
8-10/136, A-1040 Vienna, Austria 

Received 10 December 1990, in final form 9 July 1991 

Abstract. Far the first time to the author's knowledge, a rigorous mathematical treatment 
of the Spontaneous 2PIl,-1 lSl12 transition, going beyond the usual Markov approximation. 
is presented in the case of the Dirac hydrogen atom. The relevant transition matrix elements 
of the Dirac Hamiltonian are calculated without the dipole approximation. Further, a 
non-Markovian equation of motion for the non-decay probability of the unstable 2P,/, 
state is derived, by using a self-consistent projection-operator method recently developed 

deviations from exponential decay for asymptotic times are obtained. Moreover, by careful 
error estimations deviations from exponential decay for finite times with definite validity 
range arc also calculated. Finally, for the radiative lineshape a new quasi-Lorentzian 
distribution is obtained. 
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1. Introduction 

The non-Markovian behaviour in the case of the spontaneous emission from a non- 
relativistic hydrogenic atom has recently been examined in great detail (see [ l ,  21 and 
the references quoted therein). (Hereafter reference [Z ]  will be referred to as 1.) Similar 
calculations in the case of the Dirac hydrogen atom seem to be lacking in the literature. 
As was shown elsewhere (in the non-relativistic case) [l], in order to be able to carry 
out such a calculation, the retardation effects are to be taken into account (no kind 
of dipole approximation leading to incorrect asymptotic results is permitted), and a 
self-consistent projection-operator method (SCPOM) [3] has to be applied. 

In the present paper we study the non-Markovian (non-exponential) decay for the 
ZP,/, + lS,/2 transition in the case of a Dirac hydrogenic atom (some preliminary results 
were presented in [4]). The first step in our treatment is the cumbersome, but absolutely 
necessary, calculation of the transition matrix elements for the 2P,/2+ lS,12 transition 
(without making the dipole approximation). After this, the second step is the derivation 
of a closed non-Markovian equation of motion for the probability amplitude for finding 
the atom in the initial state ZP,,, and the radiation field in the vacuum field. This is 
achieved by applying an SCPOM, developed in [3], to the Dirac equation. The third 
step consists in applying the method of the Laplace transform and its inverse to the 
non-Markovian equation. This yields analytic results for the deuiarionsfrom exponentiai 
decay which are valid for asymptotic and finite times. It should be emphasized that all 
the results presented in the present paper possess definite validity ranges based on 
careful error estimations, which are absolutely necessary in a rigorous mathematical 
treatment. 
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Finally, a new expression for the frequency spectrum of the spontaneously emitted 
radiation showing a quasi-Lorentzian shape is calculated. 

The paper is organized as follows. In section 2 the Dirac Hamiltonian for interaction 
between the hydrogenic atom and the radiation field is presented. In section 3, by 
using an SCPOM, a non-Markovian equation of motion for the non-decay probability 
amplitude of the unstable state is derived. Moreover, the corresponding matrix elements 
of the transition 2P,,*+ IS,,, are used without applying the dipole approximation. In 
section 4, the non-Markovian equation of section 3 is treated analytically. Deviations 
from exponential decay being valid for asymptotic and finite times are calculated. In 
section 5 a quasi-Lorentzian expression for the radiative lineshape is obtained. In 
section 6 all results obtained are extensively discussed and compared with the previous 
work in this field. Finally, in appendix A analytic results for the transition matrix 
elements in the Dirac hydrogen atom are derived, and in appendix B an integral 
appearing in section 4 is evaluated exactly. 

2. The Dirac interaction Hamiltonian 

By using the second quantization for electrons and photons, the relativistic Dirac 
Hamiltonian - e a .  A for the interaction between the atom and the radiation field takes 
the following form: 

in the interaction picture. The transition matrix elements are given by 

H & ( k ) = e  d’rAp.*(k, r)u:(r)auv(r) (2.2) 

where we expanded the vector potential in terms of electric multipoles A;(k, r )  and 
magnetic multipoles A;(k, r), p = ( I ,  M )  (J and M are the angular momentum and 
magnetic quantum numbers, respectively) [SI: 

A(r)=  -x dkna,,(k)A,,,(k,r)+Hc (2.3) 
P.* Y U 

with 

A,,(k, 1)=(2hck)’’~i’[iAAFg(k, r)+A;(k, r)] (2.4) 

A Y d k  = j J k r ) Y , , , , d ~ ) .  (2.6) 

Here j,(kr) are the spherical Bessel functions and Y,,L.,M(12). fl= 8, p are the spherical 
vector harmonics given in the spherical basis-vector system [ 6 ] :  



2P,,,+ transition in the Dirac hydrogen 693 

where the corresponding Clebsch-Gordan coefficients can be found in [5], and the 
spherical harmonics are defined by 

(2.9) 

with PY(C0s 8) as the associated Legendre polynomials. (Here, unlike Bethe and 
Salpeter [71, we used the conventional definition of Y,,m(fi).) 

In our notation (cf (2.1)-(2.3)) c:, c, are the fermion creation and annihilation 
operators for an electron in state s, aG,,(k), as , , (k)  are the boson creation and annihila- 
tion operators for a photon with frequency w = kc, helicity A and p = ( J ,  M ) .  Further- 
more, w. , .=(E, -  E , . ) / f i  are the atomic transition frequencies and a is the Dirac 
operator [7,8] 

(2.10) 

with U as the Pauli spin operators and us( r )  are the Dirac eigenfunctions corresponding 
to the energy eigenvalues E, of an electron in a Coulomb potential (see appendix A). 

3. Non-Markovian equation of motion for the 2P,,2+ l& transition 

The relativistic Schrodinger (Dirac) equation in the interaction picture reads as 

where, since we are interested in the decay of the bound state 2Plj2 of an electron in 
a hydrogen atom, we choose the special initial condition 

1" Il(E))A@IV)R (3.2) 

l l ( . c ) ) , = l n = 2 ,  I =  l , j = f ,  m = ( E ) $ ,  E =(+, -) 

with 

(3.3) 

as the initial state of the electron in the atom, and IV), as the vacuum state (no 
photons) of the radiation field. 

In order to derive a non-Markovian equation of motion for the decay of the state 
lV(O)), we apply the SCPOM developed in [3] to the Schrodinger equation (3.1). The 
advantages of the SCPOM as compared with the usually used projection-operator 
methods leading to  unphysical results have been discussed in great detail in [9]. Since 
we are interested only in the spontaneous decay of a state, the virtual transitions 
contributing to energy-level (Lamb) shifts will be ignored in the following. Then, in 
the lowest-order approximation our SCPOM yields [3]: 

(3.4) 
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(3.7a) 

(3.76) 

P2(+) = ( J X + ,  = 1, MX+, = 0) (3 .8a)  
P 2 ( - ) = ( 5 2 ( - , =  1,M2(-)=-1) P 3 ( - ) =  (J3(-l= 1, M3(-) =o). (3.8b) 
Here 1:;) is the unit operator in the subspace (containing the one-photon states 
Ik,pic.,, created by a onefold action of the interaction Hamiltonian H(r)  on the 
initial state vector I I ( E ) ) ~ O ~  V ) ,  [3], where the virtual-transition matrix elements are 
ignored. This has the consequence that the only matrix elements which appear in (3.4) 
are: 

&I+)= ( J 3 ( + )  = 1, M3(+)= 1) 

HXi:c,,i(k) i = 2 , 3  E = ( + , - )  A =*I 
The calculation of these matrix elements is carried out in appendix A. By using these 
results (cf ( A . 2 1 ~ )  and (A.216)) a closed equation of motion for the probability 
amplitude for finding the atom in the initial state I ~ ( E ) ) ~  and zero photons in the 
radiation field, 

with 

U =  unlnr. yg= ( 3 8 * 5 % C Z / f i  
3c 

Q =- 
2 %  

, I", -U 

where according to (A. l )  the atomic transition frequency is given by 
oo= w ~ ( ~ ) , ~ =  w,i,l,3=Qa2mc2/fi +o(~?. 

Since, from (3.10) it follows that 

h,i+i,o(f) = bl~-),o(r) = b,,dO 
we shall drop the subscript E = (+, -) in  the following sections. 

4. Analytic treatment of equation (3.10) 

By applying the Laplace transformation to (3,101, we obtain 

(3.9) 

(3.10) 

(3.11) 

!?:!2) 

(3.13) 

(3.14) 

dwF(w) 
z - i (wo-  w )  

(4.1) 
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The Laplace inversion and substitution z =  -iu +io,  yields 

where 

1 Y B ( u ) = -  
N ( u )  2n 

N ( u )  = U - W O + -  I(u) (4.3) 

(4.4) 

and the path of integration C in (4.2) is a horizontal line in the half-plane Im( u )  > 0, 
oriented from the right to the left. The evaluation of the integral in (4.4) (see 
appendix B) yields 

where P,i(Ii) is a polynomial of degree 11 in Ii: 

p,,(li) =$g.rr+&c+&5,1i2+~(c3) 

(4.5) 

(4.6) 

and log(u) is a multivalued natural logarithm of a complex variable. The integrand of 
(4.2) is analytic for Im(u) > 0 and 'lives' on the Riemann surface of log( U). Analogously 
to I, we deform the path integration C to the path K. The path K consists of two rays, 
both parallel to the line Re(u) + Im(u) = 0; one of them runs from (1  -;)a to the 
branch point 0 on the lower Riemann sheet -1, and the other runs in the opposite 
direction on sheet 0 (see figure 1 in I). 

The number of poles passed in the process of the path deformation as well as their 
localization can he found directly from the results derived in appendices C and B of 
1. The only difference is that in the present calculations we have to use the natural 
cut-off function F ( u )  (cf (3.11)) instead of the non-relativistic one 

used in 1. It should be taken into account that between these cut-off functions the 
following relations hold: 

IF(u)l< 161f(u)l U = (1 - i )nx  O s x s m  (4.8) 

(the path of integration K is parametrized), and 

(4.9) 

(4.10) 

where the both last relations follow immediately if F ( w )  < 16.J(w) is inserted into the 
expressions for I(u) and I'( U), respectively (cf (4.4)). 
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In this way we can adopt the localization of the poles, the residue evaluation and 
the error estimation from appendices B and C in I. The fixed-point method yields the 
following result for the Weisskopf-Wigner pole U-, (lying on the Riemann sheet - I ) :  

y,,--ln - -i-+A, 

(4.11) 
(3 Y 167 7 

1024 24071 271 
U-, = WO -- yn -__ 

1-1 <10-'0. 
U-, 

Of course, this leads to somewhat larger errors as compared with the results of I, but 
the errors are still small enough to guarantee the applicability of the fixed-point method 
as well as the residue calculation and there is no need for a more exact approximation 
procedure. 

The above path deformation of the integration in (4.2) and the theory of the residue 
calculus yields 

bi,o(t)= R i ( f ) +  Di(t) (4.12) 

where 

R , ( f )  = Res[e'"n' e-'"'&u), U-,] (4.13) 

is the residue of the Weisskopf-Wigner pole describing the Markovian behaviour 
(exponential decay) and 

27Il I K 

e'%' 
D,( r )  =- du & U )  e-'"' (4.14) 

describes the non-Markovian behaviour (deviation from exponential decay). By using 
appendix B in I, it is easy to calculate the residue in (4.13): 

R,(f)=(l+AR)e'"O'e-' ' - ' '  lARl<I.6x10-6. (4.15) 

By parametrizing the path of integration K, (4.14) takes the following form: 

with 

where the subscripts 0 and - 1  denote different branches of the functions on the 
Riemann surface of log(u). According to Abel's asymptotic the main asymptotic 
contribution to D , ( f )  in (4.16) stems from the first term in a geometric series develop- 
ment around x = 0: 

(4.18) 
( I  - i )nx  

- + 0 ( x 2 ) .  
F[(l-i)nx] 

No[(l -i)nx]N-,[(I  - i )nx] -  N:(O) 

Thus, the asymptotic result for D , ( f )  reads as 

(4.19) I 
271Ni(O) f 2  

D , ( r - m ) =  - y -el.",,I 
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where according to (4.3), (4.5) and (4.6) it holds that 

167 
1024 

Yn 
21r N , ( 0 ) = - o , + - P P , , ( O ) = - w , + y n -  

=-WO.  (4.20) 

Analogously to I, the integral in (4.16) can be solved by an approximation procedure 
based on accurate error estimates. This procedure shows that the asymptotic main term 

e%l iYDl  

M ( t ) =  - Y -=-re (4.21) 
21r(-w,+yfl(167/1024))~ t2  21rwi 1' 

describes the non-Markovian behaviour for finite times as well, within some error 
bounds: 

(4.22) 

(4.23) 

5. Radiative lineshape 

The radiative lineshape or frequency spectrum, describing the probability for finding 
the emitted photon in the frequency interval [ w ,  w+dw], can be obtained from (4.2) 
in the following way. The path of integration C in (4.2) should be deformed to the 
path C*. The path C* consists of two horizontal rays, emanating from 0 and tending 
to +a, so that C* starts on the upper half-plane of the zeroth Riemann sheet at +a, 
then winds around the branch point 0 and tends to +m on the lower half-plane of the 
same zeroth Riemann sheet. 

By using the argument principle of appendix C in I, it can be shown that in the 
process of the path deformation no poles are passed and, therefore, (4.2) takes the 
following form: 

By parametrizing the path of integration C* we obtain 

' I  - 1 e'WO' m 

b l ~ o ( t ) = ~ / o  dw e-i"'[ No("-io) No(w+iO) 

iyF(w) e'""' m 
= _  j d w  e-'"' 

21ri Ng(w + io) - iyF(w)N,(w +io) 

where we used 

N,(o -io) = N,(w +io) - iyF(w). (5.3) 
For f =  0, the integrand of (5.2) is identical with the frequency spectrum function: 

(5.4) 
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where 

J ( w ) =  Io(o) - i rF(m) .  ( 5 . 5 )  

The function S(o) is quasi-Lorentzian with the decay rate y F ( w )  and the frequency 
shift ( y / 2 r ) J ( w ) ,  both depending on the frequency o. This result differs from the 
usual Lorentzian spectrum used in the literature [lo]. Namely, in the Lorentzian 
spectrum of the spontaneously emitted radiation, the decay rate as well as the frequency 
shift depend on the atomic transition frequency wo and not on the frequency W. 

6. Discussion 

In the present paper, for the first time to our knowledge, a non-Markovian treatment 
of the time-dependent spontaneous Lyman-u emission process in the case of a Dirac 
hydrogen atom has been achieved. In the literature the relativistic treatment of the 
spontaneous emission was usually restricted to the calculation of time-independent 
transition probabilities without giving any result for the time-dependent behaviour of 
a spontaneous decaying atom. 

The relativistic transition probabilities were calculated numerically not only for 
one-electron atoms beyond the dipole approximation (making use of expansions in 
terms of electric and magnetic multipoles), but for many-electron atoms as well (see 
e.g. the papers by Johnson et a /  [ll-131 and Scofield [14,15]). In spite of all this, 
apart from general expressions for transition matrix elements, we have not found any 
analytic result for the matrix elements of the 2P,/ ,( i1/2)+ lS , /2( i l /Z)  transitions in 
the literature. Since such analytic results, which take into account retardation effects, 
are absolutely necessary in our treatment, the transition matrix elements of interest 
were calculated in appendix A. 

In other words, a correct non-Markovian treatment of the problem requires the 
inclusion of the retardation effects as well as the application of an SCPOM. Namely, 
as a consequence of ignoring retardation effects, not only do divergent results, making 
the introduction of unnatural cut-off frequencies, appear, but incorrect cut-off-depen- 
dent deviations from exponential decay emerge as well (for more details see [l]). 
Further, as was demonstrated in [9], the usually used projection-operator method 
yields unphysical results (negative probabilities) for the deviations from exponential 
decay, since the Born approximation without the Markov approximation leads to the 
violation of a consistency condition. 

In order not to make further calculations unnecessarily complicated and analytically 
unfeasible, in the radial part of the transition matrix elements, terms of order of a3 
were ignored in appendix A (cf (A.15)). The neglect of these terms is justified in the 
present treatment, since these terms do  not influence the non-Markovian time behaviour, 
but only contribute to corrections of the Einstein coefficient yo for the spontaneous 
emission, which are of order of magnitude yoa2.  However, despite the fact that 
higher-order-a relativistic effects were ignored, it is obvious that the present treatment 
is superior to that of the non-relativistic one used in I ,  since, contrary to I, the effect 
of the electron spin and terms like (e2/2mc2)A2 are taken into account (in this sense 
similarity to the Pauli approximation arises). 

By comparing the present treatment to that of I, the following can be deduced: 
( i )  Instead of a single transition 2P- 1s (see I )  two different transitions 

2P,/2(+1/2)- 1S,12(1/2) and 2P,/d+1/2)- lS,,&1/2) occur. 
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(ii) Instead of non-relativistic cut-off and level-shift functions I(@) (cf (4.7)) and 
f ( m )  (cf (4.9) and in I see (2.5)) new functions F ( w )  (cf (3.11)) and Z(o) (cf (4.4) 
and (4.5)) are obtained. 

From (i) and (ii) it follows that if we are only interested in the total result for the 
non-decay probability amplitude of the state 2P,/*, where both transitions mentioned 
in (i) are included, the only difference between the present results and that of 1 exists 
in small corrections in the real part of the Weisskopf-Wigner pole (level shift) (compare 
(4.11) with (2.9) in I )  and in the frequency wo appearing in the coefficient of the 
denominator of the asymptotic main term M ( t )  (compare (4.21) with (2.22) in I). 

Finally, from all this it can be concluded that the relativistic treatment of the 
problem leads only to small corrections in the constant coefficients (Einstein coefficient 
for the spontaneous emission, transition frequency and level shift) but no correction 
in the Markovian and non-Markovian time behaviour arises. 

Now a few words should be spent on the radiative lineshape treated in section 5. 
The present non-Markovian treatment leads to a new quasi-Lorentzian spectrum (cf 
(5.4)) in which instead of constant decay rate yF(wo)  and frequency shift J ( w o )  (see 
e.g. [IO]) frequency-dependent functions y F ( w )  and J ( o )  (whose non-relativistic 
expressions are given by (4.7) and (4.9)) appear. However, since these frequency- 
dependent functions are multiplied by a very small factor y =  lo-', the effect of the 
frequency dependence is extremely weak and the Lorentzian spectrum used in the 
literature can be considered as a very good approximation in a large frequency interval 
around the transition frequency wo. 
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Appendix A: Analytic results for the transition matrix elements without 
dipole approximation 

The discrete energy eigenvalues of an electron in a Coulomb potential [7] read as 

a2 

[ n  - (j+f) +J(j+il2- a*]* 

By the subscripts s = (n, /, j ,  m )  we denote collectively the principal quantum number 
n as well as the angular momentum quantum numbers /, j ,  m and LY is the fine structure 
constant. The Dirac eigenfunctions corresponding to the eigenvalues E, read as 
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where gAr) =&, , ( r ) , .C(r )  =fJr) are the radial parts and +T(fi), &(Q) are the angular 
parts given by 

(A.3o) 

By using (2.3)-(2.10), (A.2) a n d  (A.3) the transition matrix elements of (2.2) take 
the following form: 

HTL,*(k) = e[2hck/(ZJ+ l)]"zi'+'{iA[fiRsv'' It, (k)N>,;+,,M 

- J J T T R ~ , ( k ) N ~ ; ' _ , , M - f i R ' . '  I t ,  (k)fi$+,,M 

+ ~ R ; : ' , ( k ) f i ~ ; ' _ , , , ] + R ; . " ' ( k ) N : ; : ,  -R2s (k ) f i$M)  (A.4) 

N>,;',+, = I dQ Y J , L , M ( ~ )  . &(Q) 

*$,M = I d a  YJ,L, ,L .M(~~)  . &,Ja) 

where we used 

(A.5a) 

(A.56) 

(A.6a) 

(A.66) 

R:"'(k) = drr'j, (kr)gs(r).C,(r). (A.7) fo- 
According to calculations of section 3 the only matrix elements of interest are: 

HI(".' , ,M, , , , ,A(  k)  = - (2fi~k/3)"~iA[ R:'"~'(k)N"''~' - a R ~ ( c ) ~ i ( k ) N ' ( * l ~ '  
1.2.M,i., l.O.M,w 

- R ~ l ( ? ~ ( k ) f i l t ? l . ,  + f iR~ i l ( ' l (k ) f i l l~ ) , r  
I.Z.M,i,) I .O. M,i,,l 

i = 2 , 3  Mx+)=M,(-I=O M2t-l= -M3,+,=-l  (A.8) 

where in our case the two last terms in (A.4), (stemming from magnetic multipole 
transitions) vanish, since only electric dipole transitions are possible. 

By using (A.5), (A.6), (A.3), (2.7) and the orthogonality properties of the spherical 
harmonics, a lengthy calculation yields the following result for the angular parts of 
the transition matrix elements appearing in (A.8): 
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The radial matrix elements appearing in (A.8) are 

R;('), '(k) = drr2jJ(kr)gl(cl(r)J(r)  J = O , 2  

R ~ " " ( k )  = j d r r 2 j 2 ( k r ) g ~ ( r ) ~ ~ ( ~ ~ ( r )  i = 2 , 3  

where the spherical Bessel functions are given by 

m 

0 

m 

0 

j J (  x) = (-i)' f dy e'"'PJ( y) (f , 

(A.96) 

(A.9c) - I ( C 1 . i  NI,Z.M,,~, 

1=2,3 (A.lOa) 

(A.106) 

(A. l la)  

(A.l 16) 

with PJ(y) as the Legendre polynomials. 
The normalized radial Dirac eigenfunctions can be found in [7] and read as 

2 q + 1  I f  S, 
g, (~ = ( 2)3'2[ NaO r ( 2 r ) + l )  ] "*[ 4 N ( N - l )  ] [ ( N  - 2)pn- '  -~ 2 q + 1  

(A.12a) 

(27+ l ) N  - ( N -  1)p 
fl(*)= -(%) ( 2 q +  1)( N-2) - ( N  - 1 ) p  "(" 

i = 2 , 3  

(A.126) 

(A.13a) 

/ A  ,,I.\ 
{ f i . , J V ,  

(A.146) 

where aO= 
using (A.12)-(A.14) we obtain 

cm is the Bohr radius and a = 1/137 is the fine structure constant. By 

K =;K" i = 2 , 3  1 
Ko = - 

a, 

g,(,lf;=-eeK'[KOra +O(a')] i = 2 , 3 .  (A.156) K :  
24% 
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Further, by making use of (A.15) (where the terms of the order of a' are ignored) the 
radial matrix elements of (A.lO) can be written as 

l = 0 , 2  ( A . 1 6 ~ )  
R;(').'(k) = _  K b  

2& J '  (k, K )  

with 

1 , m ~ l h l ~  k , K E R  

a 
J K  

J""+'(k, K ) =  --J'."'(k, K )  

(A.17) 

(A.18) 

where we applied ( A . l l a ) .  Further, because of (A. l Ib) ,  it holds that 

I a 
J l + ' , m + l  ( k , K ) = k J ' . " ( k , K ) - - J ' . " ( k , K ) .  Jk  (A.19) 

After some calculation, from (A.17)-(A.19), it follows that 

2 1 Jo,2(k, K )  =- 
K' [ l+ (k /K)2]Z  

2 3 - ( k / K ) 2  
K4 [l+(k/K)']'  

J0.3(k,  K )  =- 

1 S ( k / K ) '  
K 4  [ l+(k/K)*] '  

J2"(k, K ) = -  

(A.20a) 

(A.206) 

( A . 2 0 ~ )  

By inserting (A.9), (A.16) and (A.20) into (A.81, we finally obtain for the transition 
matrix elements: 

(k/K)"*[1+4( k/K)2] 
[ I +  (k/Kl21' 

H:Ii:k2(k) = -hih(m)"* 

Appendix B Evaluation of the integral in equation (4.4) 

The integral in (4.4) can be evaluated by a method similar to that described in 
appendix A of I .  Namely, the partial fraction decomposition yields 
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where 

x( 1 + a x 2 )  
( 1  + x2)6 

S(x, a )  = 

and P,,(x, U, a )  is a polynomial of degree 1 1  in x as well as in U, since it holds that 

P,,(x, U, a ) ( x - u ) +  u ( f +  au2)( i  + x ~ ) ~  
( 1  + u2)6 

x( 1 + ax') = (8 .3)  

Then, by using (B. l )  and applying the method used in appendix A of I, it can be 
shown that integrals of the form 

have the following exact solution: 

where €',,(U, a )  is a polynomial of degree 1 1  in U :  

P,,(u,  U )  = n i 6 3 i  iba+ja2j j ; i2+ui - i3 i+24a +;a2j/i2G 

+u2~[-315+210a +25a2]/512+ U'[-30- 13a+3a2]/12 

+u4~[-105-210a+75a2]/512+ u5[-15- 12a - a 2 ] / 6  

+u'T[ -63 -70a -75a2]/256+ U'[ -10-60 -3a2]/6 

+ uSn[-45 -42a -25a2]/512+ u9[-15 -8a -3a2]/24 

+ u1'n[-7-6a -3a2]/512+u"[-6-3a - a 2 ] .  (J3.6) 

From (B.5) and (8 .6)  the results (4.5) and (4.6) can be deduced immediately for a =4. 
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